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Abstract—In this paper, neural network, semi-supervised 

training, integrated learning, and other techniques are applied to 
the prediction and analysis of static voltage stability margin of 
island microgrid power systems and an online prediction method 
based on the Tri-Training-Lasso-BP network is proposed. The 
network consists of Tri-Training, the least absolute shrinkage 
and select operator (Lasso) algorithm and the backpropagation 
(BP) neural network. The analysis results on an 115-node 
example show that the proposed method can reduce the 
requirement of the data volume of the training set, take 
advantage of the massive data collected during the daily 
operation of the power system, improve the prediction accuracy 
of the network and reduce manual intervention. Finally, this 
paper uses statistical methods to make a comprehensive and 
objective description of the performance of the method. 

Index Terms—ensemble learning; island microgrid; static 
voltage stability margin; Tri-Training-Lasso-BP network 

I. INTRODUCTION 
In recent years, there have been many major blackouts [1], 

causing losses to the economic benefits of power companies 
and also having a serious impact on the development of social 
economy [2]. Researchers summarized these incidents and 
found that most of the large-scale shutdown of power systems 
is caused by the destruction of static voltage stability [3] and 
the voltage stability margin can provide intuitive information 
[4]. 

As a controllable system integrating distributed generators 
(DGs), loads and energy storage equipments, microgrid 
generally has two operation modes, which are grid-connected 
and island-isolated [5]. When the island is isolated, its own 
generators and energy storage equipments provide power. If 
any load in the microgrid has large fluctuations and the 
adjustment capability of itself cannot make the internal voltage 
of the microgrid constant, then voltage collapse may happen. 
The change of reactive load may cause destruction of voltage 
in the microgrid [6]. Therefore, the voltage stability of the 
island microgrid is a subject worth studying. Under the peer-to-
peer control, there is no equilibrium node in the system, and 
there is a droop-controlled DG. The system frequency needs to 
be considered and the traditional calculation models of power 
flow is no longer applicable. Analysis on island microgrid 
requires a correction of the conventional power flow model. 

The traditional estimation methods of voltage stability 
margin are based on continuous power flow calculation using 
power flow equation, and the process is slow. With the rapid 
development of microgrid, the traditional method of offline 
evaluation of voltage stability margin is difficult to meet the 
requirements of speed and accuracy for online real-time 
prediction [7]. In addition, most of the existing studies of 
voltage stability are targeted at transmission and distribution 
networks, yet less on microgrids.  

At home and abroad, neural network, support vector 
machine [8] and other machine learning methods are used to 
realize the prediction of voltage stability margin. However, the 
methods used before all use offline simulation data to train 
neural network and the training samples established offline 
were limited, i.e. they could not completely cover all the 
operating states of the microgrid. Therefore, the model 
obtained has defects and deficiencies. At the same time, the 
actual operation states of the microgrid are various, and there 
are bound to be factors that are not considered in the offline 
training process. Consequently, it is necessary to use the 
system real-time operation data to update and optimize the 
network parameters online. In the conventional offline 
supervised training algorithm, changing of the parameters of 
the model can only be realized by retraining the model and 
putting the model online, causing low efficiency. With the 
development of power system automation, reducing manual 
intervention is becoming a major trend. 

As a result, this paper introduces a semi-supervised 
regression method called Tri-Training to solve the problems 
mentioned above and studies voltage stability of the island 
microgrid. First, the power flow calculation model is modified 
according to the characteristics of the island microgrid. Then, 
for the prediction problem, the unlabeled data from state 
estimation in the system is pseudo-labeled and participates in 
the update of the parameters of the model. This can make up 
for the shortcomings such as insufficient sample coverage 
caused by training the network using offline simulation data, 
reduce the requirement on the number of samples in the 
training set, and lessen manual intervention in the training 
process. This method achieves better online prediction with a 
smaller offline training dataset and enables adaptive training.  
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II. STATIC VOLTAGE STABILITY ANALYSIS PROBLEM 

A. Prediction Problem of Static Voltage Stability Margin 
The static voltage stability margin is calculated as follow: 
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where KP is load margin of the system; P0 is the active power 
of all loads in the current operating state of the system; Pmax is 
the maximum active power of loads the system can carry [9]. 

The prediction problem of static voltage stability margin 
can be expressed as follow. It can be redefined as an 
optimization problem: 
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where X is [x1,x2,…,xm-1,xm]T and x1,x2,…,xm-1,xm are 
respectively m state variables describing the current state of the 
system, which may be voltage amplitudes, phase angles, active 
powers and reactive powers of all nodes of the system, or the 
sum of the active powers of all nodes of the system. The object 
is to find a good model which is able to minimize the error 
between the predict value and the true value of the maximum 
active power of loads that the system can carry. At the same 
time, the constrained equation need to be considered, which 
means that the predict value is generated using the model M. 

The traditional continuous power flow method [10] is slow 
in calculation and difficult to meet the requirements of online 
real-time prediction of voltage stability margin. Therefore, the 
focus of this paper is to construct a computational model M. 
According to the characteristics of the prediction problem of 
static voltage stability margin, the input of model M is a m-
dimensional vector X, and the output is a predicted value of 
Pmax. X is a set of U, θ, P and Q. U is a set of voltage 
amplitudes of all n nodes after the standardization. θ is a set of 
voltage phase angles of all n nodes in units of radians. P is a set 
of active powers of all n nodes and Q is a set of reactive 
powers of all n nodes. P and Q are all based on the reference 
capacity of power system Sbase and the dimension of vector X is 
m=4n, in which n is the number of nodes. 

B. Division of Training Samples 
The Tri-Training-Lasso-BP network proposed in this paper 

is based on the neural network and needs to divide dataset S 
into training set and test set. There are k samples in the dataset 
S. Each sample is randomly generated within a certain range of 
values. It consists of the m-dimensional vector X and the 
maximum active power of loads Pmax the system can carry. The 
entire dataset S is expressed as: 
 ( ) ( ) ( ){ }max,1 2 max,2 max1 ,, , , ,..., ,k kS X P X P X P=   (3) 

The dataset S is divided into a labeled dataset A, an 
unlabeled dataset B, and a test dataset C. The number of 
samples in each dataset is kA, kB, kC, respectively, and 
kA+kB+kC=k. In the labeled dataset A, both the input argument 
X and the output response variable exist to participate in the 
offline training process. The unlabeled dataset B contains the 
input argument X but does not contain the output response 
variable. The test dataset C simulates the state of microgrid at a 

certain time in the future, which can be used to test the 
accuracy of the network and not participate in the training 
throughout the process. 

C. Data Preprocessing 
There are many factors that affect the static voltage stability 

margin of the power system. At the same time, the limit of load 
capacity cannot be expressed mathematically, so it is very 
difficult to choose suitable system state quantities to build an 
input vector. If all system state quantities are used, the speed of 
training and predicting will be affected. In order to solve this 
problem, the Lasso feature dimension reduction method [11] is 
introduced. The key features extracted from samples are used 
for network training and testing. It can improve the speed of 
the algorithm while making the accuracy of the it not greatly 
affected. The Lasso method uses the absolute value function of 
the model coefficients as a penalty to compress the model 
coefficients, and automatically compresses the coefficients 
with smaller absolute values to zero, thereby simultaneously 
achieving the selection of significant variables and the 
estimation of corresponding parameters [7]. It overcomes the 
shortcomings of the traditional method in the feature selection 
model, and its computational complexity is better controlled 
than other feature selection algorithms. Moreover, its time 
complexity is equivalent to the least square method [12]. 

For each sample in the dataset S describing the state of the 
system: 
 ( )max,, , 1, 2,...,i iX P i k=   (4) 
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sample being processed: 
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the sample after dimensionality reduction and m m′ ≤ . m′  is 
automatically adjusted according to the size of the constraint 
parameter t in the Lasso algorithm. The smaller t is, the smaller 
the value of m′ . Reasonably setting the value of t can control 
the dimensionality of the samples, thereby achieving the 
improvement of the training speed while ensuring the 
prediction accuracy. 

III. STATIC VOLTAGE STABILITY ANALYSIS BASED ON TRI-
TRAINING-LASSO-BP NETWORK 

A. Structure of Tri-Training-Lasso-BP Network  
The structure of Tri-Training-Lasso-BP network proposed 

in this paper is shown in Figure 1. The dotted line in the figure 
is based on offline supervised training. It first uses the labeled 
dataset A to train the neural network and then goes online for 
prediction. This part is commonly used in previous paper. In 
this paper, the online semi-supervised training module is added 
and the unlabeled dataset B can be pseudo-labeled to 
participate in the parameter update process. In order to evaluate 



the performance of the proposed method, the test dataset C is 
used. The test dataset C not participate in the network training 
process can simulate the random data in the actual running 
process to a certain extent and reflect performance of the model. 

Labeled data set A

Unlabeled data set 
B

Test data set C

Neural network offline 
supervision training 

Neural network online semi-
supervised training 

Trained offline model

A model  update 
parameters online Test result

Traditional model 
offline training, 

prediction

 
Fig. 1  Components of Tri-Training-Lasso-BP network 

B. Online Semi-supervised Regression Training 
On the basis of data preprocessing, each learner in semi-

supervised training is constructed by one-hidden-layer BP 
neural network [13]. The resulting network is called Lasso-BP 
neural network [7]. 

The state estimation module in the microgrid system can 
generate a large amount of data describing the operating states 
of the system, i.e. the m-dimensional vector X mentioned above, 
and the maximum active power of loads Pmax the system can 
carry is unknown, so the data belongs to the unlabeled dataset. 

Semi-supervised training[14] is a method between 
supervised training and unsupervised training. It absorbs the 
characteristics of unlabeled data during the training process and 
trains with unlabeled data in the case of missing data features 
and less labeled data meeting the requirements. It can improve 
the prediction accuracy of the network, reduce the number of 
samples in the offline training set, and take advantage of the 
unlabeled data when there is less labeled data [15]. 

Literature [15] proposed Tri-Training, which combines the 
advantages of semi-supervised training and integrated learning 
to improve the performance of the model. The Tri-Training 
does not have stringent requirements for the dataset and does 
not require the use of different types of learners. In this paper, 
the conventional Tri-Training method for classification is 
improved for our regression problem. The specific 
implementation steps are as follows: 

1） The labeled dataset A, the unlabeled dataset B, and the 
test dataset C are prepared, and their numbers of samples are kA, 
kB, kC, respectively, and kA+kB+kC=k. 

2） Processing the labeled offline simulation dataset A: 
The labeled dataset A is repeated sampling for three times, and  
three subsets of A are obtained, denoted as A1, A2, and A3. Then 
they are used to obtain three different Lasso-BP network 
learners, denoted as M1, M2, M3. 

3） Processing the unlabeled online state estimation 
dataset B: The learners M1, M2, M3 are retrained using the 
unlabeled data. Here, the retraining process of the learner M3 is 
taken as an example to introduce: 

The learner M1 and M2 are used to predict the value of 
unlabeled data of the dataset B, and the confidence criterion of 
prediction results is: 
 1 2( ) ( ) SURE_ERRi iM X M X′ ′− <   (6) 

where iX B′ ∈ , SURE_ERR is a constant and can be adjusted 
according to the actual situation. 

If equation 6 holds, then (Xi
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^
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predicted value of the output response variable, which is 
calculated as: 
 max 1 2,
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where Xi

’ ∈B, α+β=1. 
If equation 6 does not hold, no action is taken. 

4） Combine the pseudo-labeled dataset π3={(Xi
’,P

^

max,i)}, 
Xi

’∈B with the training dataset A3 of the learner M3 to obtain a 
new training dataset A3

’: 
 3 3 3A A π′ = ∪   (8) 

Replace A3 with A3
’ and retrain the learner M3 with A3. At 

this time, the retraining of learner M3 is completed. 
5） After all the three learners have performed steps 3) 

and 4), a Tri-Training process is completed. Repeat the Tri-
Training process until the maximum number of repetitions 
epoch_max is reached and proceed to step 6), where 
epoch_max can be adjusted according to the actual situation. 

6） The test dataset C is predicted using three learners M1, 
M2, and M3. The predicted value of the maximum active power 
of loads the system can carry is: 

 max, 1 2 3
ˆ ( ) ( ) ( )i i iiP M X M X M Xα β γ′ ′ ′= + +   (9) 

where Xi
’ ∈C, α+β+γ=1. 

As the algorithm runs, the data in the unlabeled dataset B is 
reduced and they are progressively labeled with pseudo-labels.  

IV. CASE ANALYSIS 

A. Evaluation Index of Performance 
In order to exclude the impact of the magnitude of the 

results on the mean square error assessment index, measure the 
stability and robustness of the method and monitor occasional 
serious errors, this paper defines the average relative error emean 
and the maximum relative error emax to evaluate the 
performance: 

 max,

1

max,
mean

max,

ˆ1 Ck
i i

C ii

P P
e

Pk =

−
= ∑   (10) 

 max, max,
max

max,

ˆ
max , 1,2,...,i i

C
i

P P
e i

P
k

 −
 = =
 
 

  (11) 

The algorithm performance problems to be studied in this 
paper correspond to independent samples, and there is no pair 
relationship or correlation between samples. Therefore, the 
Mann-Whitney U test is suitable for result assessment [16]. 

B. Experiment Background and Parameters Setting 
The large-scale microgrid system in [17] is used as the test 

case. The system has 115 nodes and 118 branches, including 3 
wind turbines, 2 photovoltaic cells and 8 gas turbines. Among 
them, the 71, 72, and 73 nodes where the wind turbine is 
located are regarded as PQ nodes, and the 49 and 50 nodes 



where the photovoltaic cells are located are regarded as PV 
nodes. The node where the gas turbine is located is considered 
to be a droop control node. When the droop node is running at 
no load, take ω0=1.004 and U0i=1.06. In the load model, the 
active and reactive power indices are from [18], and the static 
frequency characteristics are from [19].The system reference 
capacity Sbase is 1 MVA and the reference frequency is 50 Hz. 

After adding consideration of the droop nodes and the load 
characteristics in the microgrid[20][21] to the MATPOWER 
continuous power flow calculation program, 3000 sets of 
samples are generated as the dataset S in this paper. The 
specific method of generating samples of the power flow 
section [22] is: under the reference operating state, randomly 
initialize the operating state of the system, so that the power 
factor of each load node in the system is kept constant, and 
then the parameters of each node are randomly set according to 
Table I. Under the new operating state, the maximum active 
power of loads Pmax the system can carry is obtained by the 
modified continuous power flow method, and the iteration step 
is 0.05. The programming language used in the paper is 
MathScript and the version of MATLAB is R2018b. The CPU 
used is Intel Core i7-8700 whose main frequency is 3.20GHz, 
and the available memory is 15.8G. 

TABLE I.  RANGE OF PARAMETER OF EACH NODE 

Data Type of Node Range of Parameter 
Active power at each load node Base value×(0.7~1.3) 
Active power at generator node 

without droop control Base value×(0.7~1.3) 

Voltage amplitude at generator node 
without droop control Base value×(0.97~1.03) 

The original dataset of 3000 samples is divided into labeled 
dataset A, unlabeled dataset B and test dataset C according to 
the ratio of 0.40:0.45:0.15. The offline Lasso-BP network only 
uses A for training, C for testing; The proposed Tri-Training-
Lasso-BP network is trained using A and B. Similarly it uses C 
for testing. The termination criterion of Lasso method is that 
iteration epoch reaches 10,000 or the convergence criterion is 
less than 1×10-7. Three learners differ mainly in the process of 
resampling the labeled training set and the number of neurons 
in the hidden layer. In the online training process, part of the 
data that accounts for 80% of the original labeled data is used 
for training. 

C. Results 
The offline Lasso-BP network and the Tri-Training-Lasso-

BP network proposed in this paper are tested for 10 rounds, and 
the performance test results are shown in Table Ⅱ. The average 
and the maximum relative error distribution of each round are 
shown in Figure 2. The result shows that the Tri-Training-
Lasso-BP network proposed in this paper can optimize the 
parameters using online unlabeled samples when the offline 
label samples are limited. The mean and standard deviation of 
the maximum and average relative errors are smaller than the 
offline Lasso- BP network’s. The performance of the two 
networks was evaluated by the Mann-Whitney U test. The p 
value of average relative error is 0.0002(z=3.780) and the p 
value of maximum relative error is 0.0002(z=3.780), indicating 
that the results of the two algorithms are extremely statistically 

significant. Therefore, the Tri-Training-Lasso-BP network can 
be considered better than the traditional offline Lasso-BP 
network. 

TABLE II.  PERFORMANCE COMPARISON BETWEEN OFFLINE LASSO-BP 
NETWORK AND TRI-TRAINING-LASSO-BP NETWORK 

Test System 
Offline Lasso-BP network 

[7] 
Tri-Training-Lasso-BP 

Network 
emean (%) emax (%) emean(%) emax (%) 

115-node microgrid 1.42603 7.3429 0.85411 4.4769 
The speed of the algorithm is evaluated when keeping the 

other test conditions as the same, and the time required is 
shown in Table Ⅲ. 

TABLE III.  SPEED TEST RESULTS FOR THE TRI-TRAINING-LASSO-BP 
NETWORK 

Test System Preprocessing Time /s Parameters Update Time /s 
115-node microgrid 1.452 177.380 

At present, the measurement devices used in microgrid 
systems are mainly PMU, RTU and AMI. The real-time data 
output delay of PMU is not greater than 30ms, which is a 
millisecond-level sampling device and its sampling period is 
defined as TPMU. RTU is generally a second-level sampling 
device and its sampling period is defined as TRTU. However, the 
sampling period of AMI is longer, which is generally 15 
minutes, and the sampling period is defined as TAMI [23][24]. 
The result shows that the Tri-Training-Lasso-BP network 
proposed in this paper is able to adapt to the actual needs of 
engineering practice. Considering that the calculation period of 
current state estimation is generally minute level, the method 
proposed can meet the requirements of online applications. 

 
Fig. 2 Relative error of offline Lasso-BP network and Tri-Training-Lasso-BP 

network on 115-node microgrid test case 

In actual applications, the number of labeled samples Ak  
and the proportion of labeled samples Ar  used for offline 
training can be determined according to engineering needs, 
difficulty of obtaining labeled samples and the prediction 
accuracy level required. The number of unlabeled samples can 
be calculated as below: 

 



( )1 0.15A
B A

A

kk r
r

= − −   (12) 

After the program goes online, it check whether the number 
of unlabeled samples collected reaches Bk  every T period, 
where T=k·lcm(TPMU, TRTU, TAMI); k is a positive integer which 
can be set according to the actual requirements. If the number 



of unlabeled samples collected reaches Bk , then a model 
parameter update process is performed. 

V. CONCLUSION 
The static voltage stability margin online prediction method 

based on Tri-Training-Lasso-BP network proposed in this 
paper can make full use of data features in unlabeled samples 
to update the parameters of the network when the label samples 
are limited. It not only reduces the requirement for the amount 
of data in the offline training set, but also improves the 
prediction accuracy of the conventional Lasso-BP network 
using only labeled samples for training. 

In this paper, the concept of unlabeled samples is 
introduced in the field of static voltage stability margin 
prediction of microgrid and the power flow calculation model 
in microgrid is rebuilt. In engineering practice, unlabeled 
samples can be obtained in large quantities during actual 
system operation. This paper provides a way to utilize the 
measurement or pseudo-measurement data in the actual 
operation of the microgrid, which can improve the accuracy of 
the prediction model and reduce the manual intervention in the 
parameter update process. In addition, this paper embodies the 
idea of integrated learning, which can make full use of the 
advantages of learners of different structures, complement each 
other and improve prediction accuracy.  

In the actual application of engineering, it is necessary to 
consider how to perform feature and sample screening on the 
massive operational data to participate in the update process of 
parameters. 
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